Progulki-po-reke-moskwa.ru

прогулки на теплоходе по Москве реке

Гидроксамовые кислоты

07-08-2023

Перейти к: навигация, поиск
Общая формула гидроксамовых кислот.

Гидроксамовые кислоты — класс органических соединений, которые содержат функциональную группу RC(O)N(OH)R', где R и R' — углеводородные радикалы. Фактически они представляют собой амиды (RC(O)NHR'), у которых один атом водорода при азоте замещён на гидроксил. Часто используются как хелатирующие агенты металлов. Обладают таутомерией, могут обратимо переходить в гидроксииминовую форму[1].

История

Впервые гидроксамовую кислоту удалось получить в 1869 г. в лаборатории Вильгельма Лоссена. В результате взаимодействия этилоксалата и гидроксиламина была получена оксалогидроксамовая кислота. Чуть позже удалось получить смесь моно-, ди- и трибензоиловых производных гидроксамовых кислот в результате реакции гидроксиламина с хлорангидридом бензойной кислоты[1].

Синтез и реакции

Таутомерный переход гидроксамовой кислоты в гидроксииминовую форму.

Гидроксамовые кислоты обычно получают из сложных эфиров или хлорангидридов карбоновых кислот. Например, синтез бензогидроксамовой кислоты идёт в соответствии со следующим уравнением реакции[2]:

C6H5CO2Me + NH2OH → C6H5C(O)NHOH + MeOH

Также гидроксамовые кислоты могут быть получены из альдегидов при помощи реакции Анджели — Римини[en].

Наиболее известная реакция с участием гидроксамовых кислот — это перегруппировка Лоссена. Алкилирование приводит к образованию сложных алкиловых эфиров гидроксамовых кислот, а ацилирование хлорангидридами карбоновых кислот — ацильных производных гидроксамовых кислот[1].

Физические свойства

Ароматические гидроксамовые кислоты — относительно стабильные кристаллические твердые вещества. В целом, гидроксамовые кислоты — менее сильные кислоты, чем соответствующие им карбоновые (рК около 9)[1].

Координационная химия и биохимия

В области координационной химии гидроксамовые кислоты используются в качестве лигандов[3]. Депротонируясь, они превращаются в бидентатные лиганды гидроксоматы, которые связывают ионы металлов. Сродство гидроксоматов к ионам трёхвалентного железа настолько велико, что в результате эволюции у живых организмов появилось целое семейство гидроксамовых кислот, которые функционируют как лиганды и переносчики ионов железа. Таки вещества называются сидерофоры[en] и используются для поглощения ионов железа всеми бактериями и растениями. Использование этих веществ позволяет растворить нерастворимые соединения трёхвалентного железа. Образовавшиеся комплексы затем транспортируются в клетку, где Fe3+ восстанавливается до Fe2+. Сродство гидроксоматов к Fe2+ значительно меньше, чем к Fe3+, поэтому ион двухвалентного железа легко диссоциирует из такого комплекса. У двудольных, не злаковых и дрожжей восстановление сидерофоров осуществляется внеклеточно, а в клетку поступает свободный ион Fe2+. У злаков, остальных грибов и бактерий сидерофор транспортируется в клетку целиком, и лишь затем подвергается восстановлению[4].

Использование

Гидроксамовые кислоты широко используются для флотации редкоземельных минералов. Они применяются для концентрирования и экстракции руд, которые затем подвергаются дальнейшей обработке. Некоторые гидроксамовые кислоты (например, вориностат, белиностат, панобиностат и трихостатин А) являются ингибиторами гистондеацетилазы и поэтому обладают антираковыми свойствами. Дефероксамин, — природное производное гидроксамовой кислоты, — используется в качестве противоядия при отравлении железом. Ещё одна природная гидроксамовая кислота — Фосмидомицин, это ингибитор 1-деокси-D-ксилулозо-5-фосфат редуктоизомеразы (ДКФ редуктоизомераза), а салицилгидроксамовая кислота ингибирует альтернативную оксидазу растений и грибов. Кроме того, ведутся исследования по использованию гидроксамовых кислот для переработки отработанного ядерного топлива.

Примечания

  1. 1 2 3 4 Beyer-Walter, Lehrbuch der Organischen Chemie, 23. Auflage, S. Hirzel Verlag 1998 ISBN 3-7776-0808-4
  2. C. R. Hauser and W. B. Renfrow, Jr «Benzohydroxamic Acid» Org. Synth. 1939, volume 19, p. 15ff.
  3. 10.1021/cr00097a011.

Литература

  • Fouché, K. F. (June 1970). «Complex formation of Zr(IV) and Hf(IV) with hydroxamic acids in acidic solutions». Journal of Inorganic and Nuclear Chemistry 32 (6): 1949–1962. 0022-1902. Проверено 2009-04-24.
  • Barocas, A. (December 1966). «The complexing power of hydroxamic acids and its effect on behaviour of organic extractants in the reprocessing of irradiated fuels--II : The complexes between benzohydroxamic acid and thorium, uranium (IV) and plutonium (IV)». Journal of Inorganic and Nuclear Chemistry 28 (12): 2961–2967. 0022-1902. Проверено 2009-04-24.
  • Baroncelli, F. (May 1965). «The complexing power of hydroxamic acids and its effect on the behaviour of organic extractants in the reprocessing of irradiated fuels--I the complexes between benzohydroxamic acid and zirconium, iron (III) and uranium (VI)». Journal of Inorganic and Nuclear Chemistry 27 (5): 1085–1092. 0022-1902. Проверено 2009-04-24.
  • Al-Jarrah, R. H. (1981). «Solvent extraction of uranium and some other metal ions with 2-N-butyl-2-ethyl octanohydroxamic acid». Journal of Inorganic and Nuclear Chemistry 43 (11): 2971–2973. 0022-1902. Проверено 2009-04-24.
  • Gopalan, Aravamudan S. (1992). «Novel tetrahydroxamate chelators for actinide complexation: synthesis and binding studies». Journal of the Chemical Society, Chemical Communications (17): 1266–1268. 10.1039/C39920001266.
  • Koshti, Nirmal (1994-02-28). «Design and synthesis of actinide specific chelators: Synthesis of new cyclam tetrahydroxamate (CYTROX) and cyclam tetraacetonylacetone (CYTAC) chelators». Tetrahedron 50 (9): 2657–2664. 0040-4020. Проверено 2009-04-30.

Гидроксамовые кислоты.

© 2021–2023 progulki-po-reke-moskwa.ru, Россия, Нальчик, ул. Терская 11, +7 (8662) 65-82-84