Progulki-po-reke-moskwa.ru

прогулки на теплоходе по Москве реке

Эллипс

16-07-2023

Эллипс, его фокусы и главные оси
Эллипс как коническое сечение, его фокусы и директрисы, получаемые геометрически с помощью шаров Данделена.

Э́ллипс (др.-греч. ἔλλειψις — опущение, недостаток, в смысле недостатка эксцентриситета до 1) — геометрическое место точек M Евклидовой плоскости, для которых сумма расстояний до двух данных точек и (называемых фокусами) постоянна и больше расстояния между фокусами, то есть

причем

Окружность является частным случаем эллипса. Наряду с гиперболой и параболой, эллипс является коническим сечением и квадрикой.

Эллипс также можно описать как пересечение плоскости и кругового цилиндра или как ортогональную проекцию окружности на плоскость.

Содержание

Связанные определения

  • Проходящий через фокусы эллипса отрезок AB, концы которого лежат на эллипсе, называется большой осью данного эллипса. Длина большой оси равна 2a в вышеприведённом уравнении.
  • Отрезок CD, перпендикулярный большой оси эллипса, проходящий через центральную точку большой оси, концы которого лежат на эллипсе, называется малой осью эллипса.
  • Отрезки, проведённые из центра эллипса к вершинам на большой и малой осях называются, соответственно, большой полуосью и малой полуосью эллипса, и обозначаются a и b.
  • Точка пересечения большой и малой осей эллипса называется его центром.
  • Расстояния и от каждого из фокусов до данной точки на эллипсе называются фокальными радиусами в этой точке.
  • Расстояние называется фокальным расстоянием.
  • Величина называется эксцентриситетом.
  • Диаметром эллипса называют произвольную хорду, проходящую через его центр. Сопряжёнными диаметрами эллипса называют пару его диаметров, обладающих следующим свойством: середины хорд, параллельных первому диаметру, лежат на втором диаметре. В этом случае и середины хорд, параллельных второму диаметру, лежат на первом диаметре.
  • Радиус эллипса в данной точке (расстояние от его центра до данной точки) вычисляется по формуле , где  — угол между радиус-вектором данной точки и осью абсцисс.
  • Фокальным параметром называется половина длины хорды, проходящей через фокус и перпендикулярной большой оси эллипса.
  • Отношение длин малой и большой полуосей называется коэффициентом сжатия эллипса или эллиптичностью: Величина, равная называется сжатием эллипса. Для окружности коэффициент сжатия равен единице, сжатие — нулю. Коэффициент сжатия и эксцентриситет эллипса связаны соотношением
  • Для каждого из фокусов существует прямая, называемая директрисой, такая, что отношение расстояния от произвольной точки эллипса до его фокуса к расстоянию от этой точки до данной прямой равно эксцентриситету эллипса. Весь эллипс лежит по ту же сторону от такой прямой, что и фокус. Уравнения директрис эллипса в каноническом виде записываются как для фокусов соответственно. Расстояние между фокусом и директрисой равно

Свойства

  • Оптические
    • Свет от источника, находящегося в одном из фокусов, отражается эллипсом так, что отраженные лучи пересекутся во втором фокусе.
    • Свет от источника, находящегося вне любого фокусов, отражается эллипсом так, что отраженные лучи ни в каком фокусе не пересекутся.
  • Если и — фокусы эллипса, то для любой точки X, принадлежащей эллипсу, угол между касательной в этой точке и прямой равен углу между этой касательной и прямой .
  • Прямая, проведённая через середины отрезков, отсечённых двумя параллельными прямыми, пересекающими эллипс, всегда будет проходить через центр эллипса. Это позволяет построением с помощью циркуля и линейки легко получить центр эллипса, а в дальнейшем оси, вершины и фокусы.
  • Эволютой эллипса является астроида.
  • Точки пересечения эллипса с осями являются его вершинами.
  • Эксцентриситет эллипса равен отношению Эксцентриситет характеризует вытянутость эллипса. Чем эксцентриситет ближе к нулю, тем эллипс больше напоминает окружность и наоборот, чем эксцентриситет ближе к единице, тем он более вытянут.
  • Эллипс также можно описать как

Соотношения между элементами эллипса

Части эллипса (описание см. в разделе "Связанные определения")
  •  — большая полуось;
  •  — малая полуось;
  •  — фокальный радиус (полурасстояние между фокусами);
  •  — фокальный параметр;
  •  — перифокусное расстояние (минимальное расстояние от фокуса до точки на эллипсе);
  •  — апофокусное расстояние (максимальное расстояние от фокуса до точки на эллипсе);

.













– большая полуось
– малая полуось
– фокальное расстояние
– фокальный параметр
– перифокусное расстояние
– апофокусное расстояние

Координатное представление

Эллипс как кривая второго порядка

Эллипс является центральной невырожденной кривой второго порядка и удовлетворяет общему уравнению вида

при инвариантах и где:

Соотношения между инвариантами кривой второго порядка и полуосями эллипса:

Каноническое уравнение

Для любого эллипса можно найти декартову систему координат такую, что эллипс будет описываться уравнением (каноническое уравнение эллипса):

Оно описывает эллипс с центром в начале координат, оси которого совпадают с осями координат.

Уравнения в параметрической форме

Геометрическая иллюстрация параметризации эллипса (анимация).

Каноническое уравнение эллипса может быть параметризовано:

где — параметр уравнения.

В случае окружности параметр является углом между радиус-вектором данной точки и положительным направлением оси абсцисс.

В полярных координатах

Если принять фокус эллипса за полюс, а большую ось — за полярную ось, то его уравнение в полярных координатах будет иметь вид

где e — эксцентриситет, а p — фокальный параметр. При положительном знаке перед e второй фокус эллипса будет находиться в точке а при отрицательном — в точке где фокальное расстояние

Если принять центр эллипса за полюс, а большую ось — за полярную ось, то его уравнение в полярных координатах будет иметь вид

Длина дуги эллипса

Длина дуги плоской линии определяется по формуле:

Воспользовавшись параметрическим представлением эллипса получаем следующее выражение:

После замены выражение для длины дуги принимает окончательный вид:

Получившийся интеграл принадлежит семейству эллиптических интегралов, которые в элементарных функциях не выражаются, и сводится к эллиптическому интегралу второго рода . В частности, периметр эллипса равен:

,

где — полный эллиптический интеграл второго рода.

Приближённые формулы для периметра

Максимальная погрешность этой формулы ~0,63 % при эксцентриситете эллипса ~0,988 (соотношение осей ~1/6,5). Погрешность всегда положительная.

Приблизительно в два раза меньшие погрешности в широком диапазоне эксцентриситетов дает формула:

, где

Максимальная погрешность этой формулы ~0,36 % при эксцентриситете эллипса ~0,980 (соотношение осей ~1/5). Погрешность также всегда положительная.

Cущественно лучшую точность при обеспечивает формула Рамануджана:

При эксцентриситете эллипса ~0,980 (соотношение осей ~1/5) погрешность составляет ~0,02 %. Погрешность всегда отрицательная.

Площадь эллипса и его сегмента

Площадь эллипса вычисляется по формуле

Площадь сегмента между дугой, выпуклой влево, и хордой, проходящей через точки и

[источник не указан 68 дней]

Если эллипс задан уравнением , то площадь можно определить по формуле

.

Построение эллипса

Эллипсограф в действии
Построение с помощью иголок, нитки и карандаша.

Основная статья — статья «Построение эллипса» в Викиучебнике.

Инструментами для рисования эллипса являются:

  • эллипсограф;
  • две иголки, воткнутые в фокусы эллипса и соединённые ниткой длиной 2a, которую оттягивают карандашом.

При помощи циркуля или циркуля и линейки можно построить любое количество точек, принадлежащих эллипсу, но не весь эллипс целиком.

См. также

Литература

  • Корн Г., Корн Т. Свойства окружностей, эллипсов, гипербол и парабол // Справочник по математике. — 4-е издание. — М.: Наука, 1978. — С. 70—73.

Ссылки

  • А. В. Акопян, А. А. Заславский. Геометрические свойства кривых второго порядка, — М.: МЦНМО, 2007. — 136 с.
  • И. Бронштейн. Эллипс // Квант, № 9, 1970.
  • А. И. Маркушевич. Замечательные кривые // «Популярные лекции по математике», выпуск 4.
  • S.Sykora, Approximations of Ellipse Perimeters and of the Complete Elliptic Integral E(x). Review of known formulae
  • Grard P. Michon. Perimeter of an Ellipse (Final Answers), 2000-2005. — 20 c.
  • Видео: Как нарисовать эллипс

Эллипс.

© 2021–2023 progulki-po-reke-moskwa.ru, Россия, Нальчик, ул. Терская 11, +7 (8662) 65-82-84